Universal behavior of Lyapunov exponents in unstable systems.

نویسندگان

  • Bonasera
  • Latora
  • Rapisarda
چکیده

We calculate the Lyapunov exponents in a classical molecular dynamics framework. Yukawa and Slater-Kirkwood forces are considered in order to give an equation of state that resembles the nuclear and the atomic He equation of state, respectively, near the critical point for liquid-gas phase transition. The largest Lyapunov exponents l are always positive and can be very well fitted near the “critical temperature” with a functional form l ~ jT 2 Tcj , where the exponent v ­ 0.15 is independent of the system and mass number. At smaller temperatures we find that l ~ T 0.4498, a universal behavior characteristic of an order to chaos transition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0 M ay 1 99 5 Universal Behavior Of Lyapunov Exponents In Unstable Systems

We calculate the Lyapunov exponents in a classical molecular dynamics framework. The system is composed of few hundreds particles interacting either through Yukawa (Nuclear) or Slater-Kirkwood (Atomic) forces. The forces are chosen to give an Equation of State that resembles the nuclear and the atomic 4 He Equation Of State respectively near the critical point for liquid-gas phase transition. W...

متن کامل

Characterization of the spatial complex behavior and transition to chaos in flow systems

We introduce a “spatial” Lyapunov exponent to characterize the complex behavior of non chaotic but convectively unstable flow systems. This complexity is of spatial type and is due to sensitivity to the boundary conditions. We show that there exists a relation between the spatial-complexity index we define and the comoving Lyapunov exponents. In these systems the transition to chaos, i.e. the a...

متن کامل

A Bernoulli Toral Linked Twist Map without Positive Lyapunov Exponents

The presence of positive Lyapunov exponents in a dynamical system is often taken to be equivalent to the chaotic behavior of that system. We construct a Bernoulli toral linked twist map which has positive Lyapunov exponents and local stable and unstable manifolds defined only on a set of measure zero. This is a deterministic dynamical system with the strongest stochastic property, yet it has po...

متن کامل

Analyzing lyapunov spectra of chaotic dynamical systems

It is shown that the asymptotic spectra of finite-time Lyapunov exponents of a variety of fully chaotic dynamical systems can be understood in terms of a statistical analysis. Using random matrix theory, we derive numerical and in particular, analytical results that provide insights into the overall behavior of the Lyapunov exponents particularly for strange attractors. The corresponding distri...

متن کامل

Universal scaling of Lyapunov-exponent fluctuations in space-time chaos.

Finite-time Lyapunov exponents of generic chaotic dynamical systems fluctuate in time. These fluctuations are due to the different degree of stability across the accessible phase space. A recent numerical study of spatially extended systems has revealed that the diffusion coefficient D of the Lyapunov exponents (LEs) exhibits a nontrivial scaling behavior, D(L)~L(-γ), with the system size L. He...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 75 19  شماره 

صفحات  -

تاریخ انتشار 1995